The Induced Stress Field in Cracked Composites by Heat Flow
نویسنده
چکیده
A multiscale (micro-macro) approach is proposed for the establishment of the full thermal and induced stress fields in cracked composites that are subjected to heat flow. Both the temperature and stresses distributions are determined by the solution of a boundary value problem with one-way coupling. In the micro level and for combined thermomechanical loading, a micromechanical analysis is employed to determine the effective moduli, coefficients of thermal expansion and thermal conductivities of the undamaged composite. In the macro level, the representative cell method is employed according to which the periodic damaged composite region is reduced, in conjunction with the discrete Fourier transform, to a finite domain problem. As a result, a boundary value problem is obtained in the Fourier transform domain which is appropriately discretized and solved. The inverse transform and an iterative procedure provide the full thermal and stress fields. The proposed method is verified by comparisons with exact solutions. Applications are given for the determination of the thermal and stress fields in cracked fiber-reinforced polymeric composite, cracked porous ceramic material and cracked periodically layered ceramic composite caused by the application of heat flow. The presented formulation admits however the application of a combined mechanical and heat flux on cracked composites.
منابع مشابه
Determination of Time of Oil Cracking into Gas in Weiyuan Paleo-Oil Pool in Sichuan Basin, South China
Weiyuan gas field, located in the Sichuan basin of south China, is a large marine gas field with the oldest reservoir (the Sinian sequences) in south China. The hydrocarbon origin of the gas field has long been debated by petroleum geologists. Recently, it was recognized that a paleo-oil pool maybe the significant contributor to the gas field. Consequently, when the paleo-oil pool had been crac...
متن کاملInfluence of Induced Magnetic Field and Partial Slip on the Peristaltic Flow of a Couple Stress Fluid in an Asymmetric Channel
This paper describes the effects of induced magnetic field and partial slip on the peristaltic flow of a couple stress fluids in an asymmetric channel. The two dimensional equation of couple stress fluid are simplified by making the assumptions of long wave length and low Reynolds number. The exact solutions of reduced momentum equation and magnetic force function have been computed in wave...
متن کاملEffects of chemical reaction, Heat and Mass transfer and radiation on MHD flow along a vertical porous wall in the present of induced magnetic field
متن کامل
Micropolar Fluid Flow Induced due to a Stretching Sheet with Heat Source/Sink and Surface Heat Flux Boundary Condition Effects
Computational and mathematical models provide an important compliment to experimental studies in the development of solar energy engineering in case of electro-conductive magnetic micropolar polymers. Inspired by further understanding the complex fluid dynamics of these processes, we examine herein the non-linear steady, hydromagnetic micropolar flow with radiation and heat source/sink effects ...
متن کاملImpact of Magnetic Field on Convective Flow of a Micropolar Fluid with two Parallel Heat Source
A numerical study is performed to analysis the buoyancy convection induced by the parallel heated baffles in an inclined square cavity. The two side walls of the cavity are maintained at a constant temperature. A uniformly thin heated plate is placed at the centre of the cavity. The horizontal top and bottom walls are adiabatic. Numerical solutions of governing equations are obtained using the ...
متن کامل